Techniques for Effective and Efficient Fire Detection from Social Media Images
نویسندگان
چکیده
Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFireDt), which combines feature extractor and evaluation functions to support instance-based learning; (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences – the Flickr-Fire dataset; and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFireDt was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.
منابع مشابه
Fire Detection from Social Media Images by Means of Instance-Based Learning
Social media can provide valuable information to support decision making in crisis management, such as in accidents, explosions, and fires. However, much of the data from social media are images, which are uploaded at a rate that makes it impossible for human beings to analyze them. To cope with that problem, we design and implement a databasedriven architecture for fast and accurate fire detec...
متن کاملFire detection using video sequences in urban out-door environment
Nowadays automated early warning systems are essential in human life. One of these systems is fire detection which plays an important role in surveillance and security systems because the fire can spread quickly and cause great damage to an area. Traditional fire detection methods usually are based on smoke and temperature detectors (sensors). These methods cannot work properly in large space a...
متن کاملLocalization Boyan algorithm to detect forest fires from MODIS sensor images
Of phenomena which much damage and irreparable import to forests and natural resources is the fire that each year, more than 100 fires occur in Iran and thousands of hectares of trees and plants eliminates. Given that fire risk is high in most parts of the world, full and continuous monitoring on this natural phenomenon, is essential. Use remote sensing is a way to identify and manage fire. Ahe...
متن کاملReal-time detection of wildlife using NOAA/AVHRR data Study area :(Kayamaki Wildlife Refuge)
Forest fire in recent years has paid great attention to climate change and ecosystems. Remote sensing is a quick and inexpensive way to detect and monitor forest fires on a large scale. The purpose of this study was to identify forest and rangeland fire hazards using NOAA / AVHRR in Kayamaki Wildlife Refuge. For the purpose of this study, the history of the fire-burns occurred in MODIS products...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کامل